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SUMMARY

The theory developed by G. B. tIT_itham (Com-
munieation,_ on Pure and Applied ._[athematics,

Augu,_'t I952)for the supersonic flow about bodies
in uniform flight in, a homogeneous medium is

reciewed and an integral which expresses the effect

o.f body shape upon the .flow parameters in the .far

field is reduced to a .form which, may be readily

evaluated .for arbitrary body ._hapes. This ex-

pres,_ion is tho_ used to inve,_tigate the effect of no._e

angle,.fil_enes._ ratio, and location of maximum body

cross section upon the far=field pressure jump across
the bow shock qf ._lender bodies. Curces are pre-

sealed showing the variation of the shock" strength

with each of the,_e para.meter,_. It is.found that, for

a wide variety qf,_hape,_ having equalfinene,_s ratios ,

the iTdegral ha,_ nearly a eon,_'tald value. [Ienee,

to a fir,_t order, the pre,_,_ure jump in the.{ar field is
i, dependeyd oJ the ,,'ha W and depends oMy upon the

fineness ratio.
INTRODUCTION

Ah'phlnes operating at supersonic speeds may

produce shock waves of considerable intensity at

ground level. Tim shock pattern travels with the

airplane, sometimes sweeping over large popu-

lated areas on the grmmd below. The atmosphere

experiences a sudden increase in pressure.as the
shock wave passes througt_ it. This pressure

jump across the shock is heard by the observer

as a sharp explosive-type sound, t,he so=called
"sonic boom." Under some circmnstanceg dam-

age may result to buihling components. Thus,
the sonic boom has become a serious operating

.problem and reliable theoretical prediction of the

magnitude of sonic booms has become increasingly
desirable. A variety of condition s:r:such a=s,

airplane size, speed, altitude, flight palh, winds,

and atmospheric nommifornfities--are known to

affect the strength of a sonic boom. In the

present paper the effects of body geometry are

investigat ed.
One of the more promising theoretical methods

for predicting the strength of shock waves from

aircraft at large distances appears to be that

developed by G. B. Whitham (ref. 1). This

theory is a rather lengthy modification of the

linear supersonic theory of sh, nder bodies whicb

predicts the location and strengfl_ of the shock

waves emanating fi'om a body in addition to the

surface pressures and wave drag. W]fitham's
results, which apply to thickness effects only, may

be conveniel/tly separated into two parts: the

prediction of the complicated pressures and shock

interactions near the body and the greatly simpli-
fied flow pattern at sufficiently large distances.
Whitham shows that the calculation of tile

pressure jump across the bow shock in the far
field requires only a single formula which gives

the magnitude of the discontinuity in terms of the

flight Math number, distance from the flight path,

and a coefficient which depends upon body shape

and must be evaluated for each configuration
(ruder study.

Wtfitham's theory has considerable theorctical

and experimental verification. W]lcn applied to

two-dimensional problems the method gives a

first approx!mation to the result previously
obtained by K. O. Friedrichs (ref. 2). Thc

theoretically predicted far-field strength and

_dccay of the bow shock of a supersonic body

agrees favorably with the ex-perimental evidence

gathered from studies of bullets in flight (rcf. 3),

wind-tunnel investigations (ref. 4), and flighttests
1'
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of full-scale airplanes (refs. 5, 6, and 7). OIl the
basis of these results it is felt that Whitham's

theoD- will serve as a useful guide in predicting
the trends of the ovcrpressures associated with

sonic booms.

The present paper is concerned with the effect

of body shape and fineness ratio upon the thick-
ness-induced pressures in the far field. For back-

ground tile fundamental hypothesis upon which

Whitham's work is founded is given, the physical

basis for the theory is discussed, and then a brief

development of tile equations for the far-field

conditions is given. The expression for the effect

of body shape upon the flow parameters in thc
far field is redticed to a convenient form and then

applied to a number of families of body shapes
chosen to investigate the effect of fineness ratio,
location of maximum thickness, and nose angle

on the pressure jump across the bow shock. The

reader interested only in the results may proceed

directly to the application.

SYMBOLS

Cb body-shape constant defined in

equation (24)

F(y)=l fo y S"(_)._..ly_d_

l
M

P

p®
5p----p--p®
R

I_ ma_

R'(O)
S

u.
x_r

F(y)dy

largest value which I(y) assumes for

given body

length of body
free-streanl Mach number

integer

ambient pressure

free-stream pressure

radius of body-wake combination

maximum radius of body-wake com-
bination

nose semiangle

cross-sectional area, 7rR2

free-stream velocity

cylindrical coordinates ;:x_is measured

along body axis downstream from

nose, r is radial coordinate meas-

ured perpendicular to x
distance from nose at which_radius

of body is R_
variables ""

,y

A

0

P

Subscrip ts:
b body geometry

w wake geometry

DESCRIPTIVE OUTLINE OF

polytropic index, 1.4

interval size for numericid integration
local direction of flow

local Mach angle

velocity potential

WHITHAM'S WORK

WHITHAM'S BASIC HYPOTHESIS

The theory of reference 1 is a modification of

the linear supersonic theory of nonlifting slender
bodies. The basic idea on which the theory is

based is that the failure of linear theory away from

the body surface and near shocks is due not so

much to incorrect prediction of physical quantities

along the characteristics but to improper placing
of the characteristic curves in the flow field. More

precisely, the fundamental assumption upon which
Whithanl's work is based may be stated as follows.

Linear theory gives a first approximation to the

entire flow provided the value it predicts for any

physical quantity at a given distance from the

body axis on a straight Mach line through a given

point on ttle body surface is inierpreled as the

value at the given distance from the a.vis on the
exact characteristic curve pointing do_mstream

from the given point on the body surface. Thus,

the failure of lilwar theory, in which the charac-

teristics are straight Math lines, may be remedied

by introducing a more exact expression for the
form of the characteristics which takes their

bending into account. The curved characteristics

may converge in various regions of the flow field

indicating the presence of shocks, and may diverge
in other regions of the flow indicating expansions.

THE PRESSURE AS PREDICTED BY LINEAR THEORY

The physical implications of this hasic hypo-

thesis may be seen with the aid of figures 1 and 2.

Figure I shows the characteristic field and a typical

pressure trace of a simple slender-body--wake

combination as predicted by linear theory. The

wake, shown by the dashed curves, converges

near the body and rapidly thins to a cylinder of

approximately constant cross section. The char-

acteristies--such as, AB, EF, and WZ--issuing

from various points along the surface and the
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FIercE 1.--Characteristics and pressure as predicted by

linear theory.
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FIGURE 2.--C]lar,_cteristics and pressure as predicted by

tile modified theory.

chara.eteristies in the upstream uniform flow are a

series of parallel straight lines, the Mach lines
1

x--_r=Constant, which make an angh' #=sin-] _

with the t)odyaxis. Let I,K,L, . . . R, Tt, Tz

represent various field points along a line paral-

lel to the body axis but at some given distance,

say 7, from it. The atmosphere experiences r_

gradual compression as it passes through the
forward portion of the characteristic fiehl as-

sociated with the t)o(I 3 (between I and K), and the

ambient pressure begins to rise above free-stream

pressure. After reaching maximum compression

at K the atmosphere expands (between K and R)

and the ambient pressure falls to some mininmm

value at R which is below free-stream pressure.
Between the maxinmm and nainimunl values the

ambient pressure becomes equal to the free-stream

pressure at S. After the ambient pressure reaches
a minimum at R the atmospl,ere is again corn-

pressed; the ambient pressure slowly rises to free-

stream pressure.

THE CHARACTERISTICS AND SHOCKS IN THE MODIFIED
THEORY

Conspicuously absent from linear theory are

shock waves, clearly visible in photographs of pro-

jectiles in flight, and their associated pressure dis-

contimfities. The flint step in introducing the

shock wavesinto the flowconsists in deriving a more

accurate expression for the shape of the character-

istics and then replacing the Mach lines of linear

theory by these more correct curves. The shape
of the ellaracteristies depends upon the loe_fl flow

direction and the loc_d speed of souml. The vari-

ation of these quantities from their main-stream

values is neglected in linear theory. In the ap-
proxinmtion used by W]fitham (ref. 1) the char-

aeteristics in the uni['orm upstream flow remain

unchanged from the straight Maeh lines of linear

theory, whereas the characteristics issuing from

the surface of the body and wake are curved, their

exact shape del)ending upon the cross-sectional-

are_r development of the body. There will, how-

ever, be one straight characteristic issuing from

a point near the center of" the body. This charac-

teristic extends to infinity, and everywhere ulong

it the ambient pressure is equal to the free-stream

pressure. The equation oF this line is given by

x--_r=yo where the exact value of yo depends

upon the body shape. In general, the curved
characteristic through a point on the body surface

is uI)stream [rein the Ma('h line through the same

point in those regions for which the ambient pres-

sure is more than tim free-stream pressure and is

downsll'eam from the XIach line in regions where

the ambient pressure is less than the free-stream

pressnre.

As a result of this varying shape and eurvalure,

the elmraeteristics tend to run togeIher and over-

lap in some regions of the flow. In such regions

shock wqves are introduced by the "angle"

condition: if two regions of supe_onie flow are

separated by a shock then, to the first order in the

strength, the direction of the shocl,: bisects the

Ma('h diret,tion of the lwo regions of few. (The
Math direction 'it a point is the outward diret.tion

making the local Math angle with the local flow

direction.) The resulting shock waves appear
in the flow in such a manner as to cut off the

characteristics before they overlap.
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THE PRESSURE AS PREDICTED BY THE MODIFIED THEORY

The modifi('alions of tile flow flehl in figure 1

are sho_m in figure 2. In this figure the points

C, It, E, . . . W eorrespoml to the points similarly

lalteled in figure 1. Associated with each of these

points there is a curved characteristic such as

CD', EF', 1__,"' which i'eplaces the corresponding
_Xlaeh line of linear theory, CD, EF, and UV in

figure 1. The shocks are shown as the curves
labeled AD'K' and XT'X'. The 3Inch line

x--_r=yo effectively separates the characteristic

field into two distinct portions, one associated
with each of the two shock waves. In order to

obtain the pressure at any point in the field, the

basic hypothesis stated previously is used. Let

K', L', M', . . . T' represent fiehl points along a

line parallel to tile body axis and at, the given
distance _ from it. Let the points be chosen so

that curved characteristics which pass through

them intersect the body at the same places as do

the Maeh lines through the points K, L, M,

• . . T_, Tz in figure I. Then, the basic hypothesis

states that the pressure a! L', N[', . . . S', N' is

the same as the pressure predicted by linear thee W

at the points L, M, . . . S, N in figure 1. In
this manner the pressure may be found at any

point not on a shock wave.
Any point on 't shock wqve is the meeting tflaee

of two ehnractm'istics each carrying a different

pressure, and hence a sudden increase in pressure

is experienced as a shock wave is crossed. ]-n

figure 2 the upstream _[a('h lint through K'
carries with it the free-stream pres._ure, whereas

the downstream curved characteristic IIK' carries

the same pressure as point K in figure 1. Thus, a

pressure jump equal to kp at K is experienced as
the sho('l< is crossed at K'. This method of deter-

mining the pressure discontinuity along the shocks
shows tlmt tile strength of the bow shocl,: ill first

increases until maximum strength is reached at

some distance from the body axis, and thereafter

decays with dislance. Similarly, at T' {m the rear

sho¢'k, where the curved characteristics through

G and W on the body-wake surface meet, the

excess pressure ou the upstream side of the shock

is the same as thal at T_; the excess pressure dream-
stream is the same as that at T=. The pressure

jump as the shock is crossed at T' is again the
difference in these two pressures.

For a body shape which gives rise to a number

of regions of positive and negative overpressure,

the characteristic field antl the resulting shock

system will, of course, be far more complicated
than that described here. IIowever, it is important

to notice that tile modifications of linear theory
described above tend to smooth out the flow

pattern between the shocks l)y "pushing" 10('ql

irregularities away from the Math line x--fb'--?lo
and into lhe shocks as the distance from tile body

increases. Thus, although a system of more than

two shocks may appear in tile neighbmqmod of

the body, in general these will coalesce at some

distance leaving only two shocks extending to

large distances. In the far fieht there is an 'd)I'Ut)t

pressure rise across the rro,,C shock, a nea,qy linear

decline in pressure between the shocks, and n

recompression at ttle rear shod_ to nearly the free-
stream pressure. This is the typic,d N-wave

pressure pulse associated with the sonic boom.

FURTHER ASSUMPTIONS AND RESTRICTIONS TO
THE TtIEORY

In addition to the t)asie hypothesis discussed,

the assumptions from which Whilham's theory

proceeds are lhe usual requirements of linear

theory--that is, the body is axisymmeiric, slender,

and l)t)inl(,d at the nose. The upstream field is
mfiform with N[aeh number sufficiently in excess
of 1.0 for the bow shock to be ,_ttached. The,

flow within the wake is not determined; however,

the mean boundary of the wake associated with 't

given body is assumed known. The wake is then
treated as a solid extension of the body; that

is, there is no flow across the assumed wake

bouIldary. The ra(lius of the body-wake comhi-
nation must be continuous allhough the slope

may be discontinuous.
Under these assumptions, reference 1 gives a

first-order approximation to the enlire pressure
field due to thickness. A method is deset'ibed for

determining the location of th(. shocks, the pressure

jump across the shocks, the pressure signature
between the shocks, and the flow field behind the

bed:( outside the wake.

If the projeelile is not axis3qnmelri(' or has a
small fineness ratio lhe shock Ira t tern and 1)ressures

in the near fiehl may differ appreciably front those

of a. slen(ler s3qnmetric body to which the theory

is npplicabh,, lh)wever, at sufficiently large dis-
lances from such a 1)ody the disturbances will be

small and the theory may be used to give useful
information of the far-field conditions. For a

parabolic body of fineness ratio 5 the trend of the
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far-field decay of tile bow-shock overpressurc as

predicted by theory agrees well with experimen[al
resulls (ref. 4).

The assunq)lion that the body is pointed at the

nose, a usual requirement in linear theory is

implicit in Whitham's equations for the perturba-
tion velocilies. Erroneous results may be oht a.ined

if the lheory is applied to a hhmt shape. For

exa.ml)h, , the [heory is inapplicable to an ellip[ieal

body (major axis in stream direelion) altlmugh
experimental work (ref. 4) shows l|tat the far-field

pressures are essentially the same as those for a

parabolic body of the same fineness ratio.

At low supersonic Mach numbers the bow shock

will be detached. A re,on of subsonic flow then

exists in the vicinity of the body nose. The shock

in the neighborhood of the nose is then consider-

ably stronger than in the case of an attached
shock. It is difficult to justify, on a theoretical

basis, the use of Whitham's equation in this

instance. However, flight test. data (ref. 5) ob-

tained at low supersonic Math numbers indicate

that reasonably good agreement is obtained in this
case. A detached shock 'dso exists ahead of a

bhmt-nose projectile. There is a real difficulty

in applying the results to such a shape as already

noted for the elliptic body.

THE BASIC EQUATIONS OF THE I_IODIFIED THEORY

For the sake of completeness a brief derivation

is gdven of the equations for the far-field conditions

pertinent to the front shock. The numerical
ewduatiov of the equation obtained for the pres-

sure discontinuity will be (te_dt with in some detail

subsequently. Cert, ain general results, applicable
to a variety of axisymmetric problems, are first

derived, and then the salient features of the far

field of a smooth body are obtained by introducing

the appropriate appro:vimations for large v,fiues
of F,

From the linearized theory of supersonic flow
it is knox_m (ref. 8) that the form of the perturba-

lion potential appropriate to a nonlifting body of
revolution is

f(t)
_(X, r)=--//-_r %/(X--t)_--_2r 2 dt

where the function J'(t) is to be determined from

the boundary condition of tangential flow at the

body surface. The perturbation velocities are

then obtained by differentiating _o:

u_-sx=-- lx__fl_.r--2 • _/(x_t)2 fl2r 2

O)

v Or r_ k , (,_)_ r=

For axissqmnetric slender smooth bodies, S(x) and

S'(x) continuous, the condition of tangential flow
U

requires that f(x)=_-_ S'(x) where S(x) is the

cross-scctional area and U_ is the free-stream

velocity. For sm,dl disturbances the body must

be pointed at the nose, S'(0)=0; hence, f(0)--0

and only the integral terms need bc retained in

equations (1).
Following the basic hypolhesis outlined in the

previous section, Whitham replaces x--/3r, the

eharaeterislic variable of linear theory, by y(x/O.

The function y(x,r) is determined fi'om the con-

dition that y(x,r)--Constant be a characteristic

curve; that is, along the curve

_=eot(,,+0) (2)

where u is the local _[aeh ,ingle anti 0 is the loe'd

direction of flow. The characteristic vari,_ble y is

defined uniquely by the convention that ala any

point on the body surface y is the value of the
linear characteristic x--fh" which passes through

that point. Thus, the equation y=xo--5ro defines
a nonlinear characteristic curve which passes

through the point xo, re on the body surface. For

bodies of large fineness ralio I/2R,,,,_, 5R<<x and

y_x. tIenee, a convenient interpretation of the

variable y is that it is the horizontal distance
from the nose at which the extended e]mracteristic

curve intercepts the body axis.
The basic results of the modified theory regard-

ing the pressure at any point in the field, the

shape of the curved characteristics, and the loca-

tion of the front shock may be obtained as follows.

In equations (1) (where now ./(0)=0), if x is

replaced by y+flr and the integrands arc approx-

imated for small values of y/Sr, the following

expressions are obtained:

=- F(y) ]

&:--,kJ
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in which

1 yo _ S"(I)F(Y)----9_ _@--t dt

In the undisturbed flow ahead of the body F(y)--

0. The pressure at any point in the field is then

given by equations (3) and the result of linear

theory as

_=--73F u 721I 2 F(y),,.2 (5)

Tile differential equation for the characteristics,
equation (2), may be approximated to the first

order in u/U_ amt v/U= as

dx _ u o v . _ u\
_-=_+ _f_/c L-_--M" (L--?_+, _)(6)

where k---211_(7A-1). When equation (3) is used,

equation (6) becomes

1 (7)
(f_r=fl--k F(Y) 2_7

If equation (7) is integrated along the character-
istic

y= xo-- _ro (S)

front the point xo,ro on the body surface to a fidd
point x,r, it follows that at large distances on the

characteristic the following equation must hohl:

The function F(y) defined by equation (4)is
of fundamental importance in the entire theory.

Equation (5) shows that, at a given radial distance

from the body axis, the longitudinal variation in
pressure is proportional to F(y). The atmosphere

undergoes compression over those portions of the

body for which F'(y)>O and expansion where

F'(y)<O. In general, a shock is formed for each
wflue of y for which F"(y)=0 and F'(y)>0 hold

simultaneously. These sltocks usually run to-

gether at some distance fi'om the body in such a

manner that only two shocks remain in the far
field. If the ultimate cross-sectional area of the

wake S_(co) is finite the function F(y) has the

following properties and physical interpretations:

(a) The initial compression at the nose:

F(y)-._2[R'(O)]_f/_ as y-+0

(b) Recompression outside the wake:

F(y) _.. S_(co) y -312 as y->co
4re

(el The balance of compression and expansion:

fo _ F(Odn = 0 (1 2)

(d) Reexpansion behind a closed body with no

wake, Sw(co) O:

F(y) _-- y as y_

x= fir-- k F (y)r '/2 + y (9)

Equations (8) and (9) constitute a parametric

representation of the curved characteristics. The

two equations may also bc interpreted as defining
the value of y, and hence of F(y), appropriate to

any field point x,r.
With the shape of lit(, characteristics known,

tit(, "angle" property which must be satisfied

along a shock is then applied to determine the
location of the front shock. In terms of the

parameter y, it is found that along the front
shock one must have

al|d

x-- _r + y-- kF(y) r_l_ (10)

rl/2 2 foy-- kF(y) 2 F(,) d, (11 )

where V is the volume of the projectile.

FURTHER SIMPLIFICATIONS APPROPRIATE FOR LARGE

DISTANCES

Front these general results the simplified equa-
tions for the conditions at the front shock are ob-

tained which are suffMently accurate in ttw field

at large distances from the body-wake combina-

tion. This is tim region of greqtest concern in the

prediction of sonic-boom intensities. Since the

expressions to be obtained arc as3mlptotic results

for large wdues of r, they shouht not be expected to

give valid results in the neighborhood of the body.
The conditions under whM_ ttw results are valid

are restated: The body is assumed to be axisym-

metric, slender, and pointed at the nose (Sg0)=

S/t0)=0); the proje<'lile-wake surf:tee is smooth
(S(x) att<l S'(x) continuous everywhere); and the

ultimate cross section of the wake Sw( oo) is finite.
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In addition, it is assumed, as is generally the case,
that only two shocks reach into the far field. A

thorough discussion of ttte structure of the near

fiehl, the circumstance leading to the appearance

of three or more shocks in tlm far field, and the

methods for dealing wittl such problems as the in-
finite slender cone and bodies with discontinuous

slope, such as the double cone, are given in refer-

ence 1. These problems require more general

techniques than are needed for the body shapes
considered in this paper.

The far-field approximations depend upon the

fact that between the shocks the only character-

isties reaching to lane distances are those for

which Y"_Yo (fig. 2). The ctmraeleristic defined

by y=yo is a straight line and, therefore, from

equation (9), F(yo)=O. Figure 2 also indicates

that in the far field large clumges in the radial dis-

tanee along the shocks are equiwtlent to very small

changes in y. Hence, Mth little loss of accuracy,
equation (11) becomes

(13)

From equations (13) and (10), the equation for the
location of the front shock hecomes

x--flr--yo=--r_14¢2k f :°F(_)d_ (14)

From equations (13) and (5), the pressure discon-

tinuity across the sho(,k is

Ap 21/47 ¢_1/4 /('"F" "" 05)

Equation (15) is the fundamental equation widely
used in predicting sonic-boom overpressures at

large distances.

The pressure at any point between the shocks

may be determined by approximating equation

(9) as

F_ , flr+yo--X

and combining with equation (5) to obtain

Ap ,yfl 1 ....

from which for fixed l'u'ge v,flues of r ttte pressure

between the slmck falls linearly at. a constant: rate

independent of the body shape.

NUMERICAL EVALUATION OF THE INTEGRAL

FOR THE PRESSURE JUMP IN TERMS OF

CROSS-SECTIONAL-AREA DISTRIBUTION

It is to be noticed that the detailed behavior of

the function F(y) is of no concern in the prediction

of the magnitude and decay of the pressure jump
across the bow shock in the far fiehl. From equa-

tion (15) it can be seen that only the value of

f7 °the expression F(n)d_ is required. The value

of this definite integral depends upon shape of the

body-wake combination under investigation (as

shown hy eq. (4)) and, of course, varies from one

shape to another.

The value of the upper limit yo is determined

from the condition that the integral

,r(v)_-f[ F(,7)d,7

is a maximum at y=yo. A necessary condition
for a maximum at y=yo is

dI .,,

_jy=l' Ly)=0

hence, yo is a root. of the equation F(y)--O. Itow-

ever, the appropriate root. is not necessarily the

first solution of F(y)=0 (excluding yo=0) as has
been indieated in some of lhe literature concerned

with _Vhitham's method. One nmst integrate to

that. root which maximizcs the integral l(y) in

order to account for the total strength of any

sul)sidiary sho('ks which may have run together

near the body to form a single intensified bow

shock reaching to huge distances. Since the total

expansion and compression must balance (eq. (12)),

there is always a root satisfying the required con-
ditions for body-wake combinations whose ulti-
nmte radius is finite.

The expression for l(y) will now be reduced to

a form which avoids determining F(y) exl)lMtly.

The result to be obtained allows rapid eah'ulation

of the required maximum value and is partieuhu'ly
llseful in dealing with shapes for which no analytic

expression is available or for which the analytic

expression is tedious to handle in an exae! manner.

Write equation (4) in the form

d ff S" (_) _.r___ df
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Then, the following expression for I(y) is easily

obtained by inh,gra!ion:

I(y)=£_F(_)dn=_ £_S"(_)-@--_ d$

Integrating by 1)arts and using the conditima
S'(O) = 0 yMds

z(y)= s'(,) d_

This integral will now 1)e evaluated mnnerieally

by using an equal-interval Simp,_on's ruh,. This

rule requires that the upper lilnit y be an even
multiple of lhe interval size which will be denoted

by .5. For the shapes treated in this paper I(y)

is a well-behaved function which presents no

difficulty if the integration is carried (>ut analyti-

cally. IIowever, if the integral is to be ewduated

numerically one must lake ('are in handling the

singularity of the integraml at the upper limit.
For this pro'pose i[ is convenient to separate the

integral into two parts

where

I(y) =1 r [L (y) -4-g (y) ]

(ty-2A St

Ii(y)=jo (_) d_

L(y)= ff s' (_) d_
-2a X?y--------_

If the condition St0)--0 is used, 1-_(y) may be

integrated by parts to el)lain

S(y--2.5) 1 ['v 2a S(_)
L(y)= d_ (16)

_/2_ 2 Jo (v-_) _/=

Applying Simpson's rule to the integral remaining
in equation (16) yiehls

1 v11_,'5

s (v- 0.5)4 o

2 4
8(y--5.5)--.. ] (17)4,_,,,s(v-4_)- _

The number of terms in equation (17) depends

upon the values chosen for y and .5; however,

it may be noted that tim last term always involves
St0) which is zero.

The integral I2(y) may similarly be integraled
by paris :

The integral in equation (18) is equivalent to the

expression

f x(_)+(y-_)x'(y)-s(y) d_

--S'(Y)f_@_d_+S(Y)_y_I-_)_/_d_

which may be sinq)lified by integrating the last
two terms as follows:

f S(_) + (y--_) S' (y) -- Sty) df

,)v, (,,_. u_i_f__. ,) Sty) (] 9)

Thus, sul)st ituling equation (19) into equation (18)

gives

f,(y)_[-s+>7s!v)
" --k _Y--_

_1_fx( ) t(y-,q s' (:/)- s(?/)dZ['
23 (y__)a/2 j_-2,_

1 f" S(_)+(y--_)S'(y)--S(y) d_
2_y_eA (y__)a/_

, , ,= _%V) S(:_-2a) (2O)
-_ S (y) -v2.54 _ .,,.,_

The integrand of the integral appearing in equa-

tion (20) is finite over the range of integration and

vanishes a.t the upper limit. Eva.hinting this
integral by using a d,ree-point Simpson's rule

gives

1_2--8 fAS' S(y--2A)
12 (Y)-_(2 L 4

+4S(y--.5) 13_,'2+16
4 Sty) (21)

If the results obtained for I_(y) and I:(y) (eqs.

,.=
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(17) and (21)) are comhined, I(y) is found to be

i(y) = I V2- s ,-_,

+-L- [(1 a"r_+ 16) _s'(y)- 4,_(_- A)6_,r2

2 4
2a/2 S(y-2_x)-g_ S0-3m)

43/2 S(y--4A)-- . . . (22)

the body length I. If /,,,,_=_. 7 ...... the for-

mula for the pressure jump becomes

where
F-

_--2._/_ _ 1.x'/"..... (24)

RESULTS OF APPIJCATION TO SPECIFIC BODIES

The numl)er of terms in the series in brackets

depends upon y and A and {ermim_les with the

term involving St0), which is zero. If no analytic

expression is availalfle for Sty), the S'(y) term in

equation (22) may be elimimtled by introducing
tim approximation

s'O)-s(Y+a)-S(Y-a)
2A

The expression for I(y) may then be written

_(v) =
,1¢-_. s--

1 1 S--lt_,.S(y+a ) 13x'2+16
27r 6_ 4 4 Sty)

+S+ll _,'2 2
S(v-a)+2_ c, S(y-2A)

+ 4 S_y--aA)+ 2 S(y--4k)

+4
5_,_s(v-5_)+ ... ] (2a)

Equation (23) is the working form desired from

which the maximum of I(y) may be readily found.

It is particularly appropriate for application to

shapes wtfich cannot be readily expressed analyti-
cally since it involves only the cross-sectiomd-area

distribution. In application a rough calculation

is first made to isolate t.lte positive peaks in I(y).

More than one peak may occur. The peak regions

are then investigated more thoroughly to deter-

mine which is the absolute maxinIum. The pres-
sure discontinuity across the bow shock of the

body is then simply

It is convenient to normalize Sty) to its maxinmm
value Sm_, and normalize the interval size A to

In order to investigate the effect of certain 1)ody-

shape parameters upon the magnitude of the bow-

shock overpressures, the body-sliape cons|ant g b

defined in equation (24) was evaluated for several

families of body shapes by using eqmdion (23).

It shouht t)e remembered that Cb depends upon
the cross-sectional-area distribution and, hence,

is a fimetion of such local details as nose angle and
location of maximum ttdckness.

The first family of shapes was chosen to investi-

gate the effect of varying the location of maximum

thickness. The body shapes in this grou]) for
which the maximum thickness lies ahead of [he

center are shown in fignlre 3. By reversing these
bodies, four shapes were obtained for which the
maximum t.hM_ness lies behiml the cemer. Since

the nose angle varies as the location of maxinmm

thickness is varied, the effect of the two parame-

ters has not been eomph'tely isolated.

The effect of nose angle was investigated wqth
the bullet-shape bodies of figure 4. The nose

angles for these shapes vtwy from at)out 5° to 20 °.
The maximmn thickness is hehl fixed at the hase.

1.0

R

.4

.2

0 .2 .4 ,6 ,8 1.0
,¢

T

F]Gv]_ 3.--Curves showing the radius of body shapes

having various locations of maximum thickness.
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1.0

.8

R .6

.4

.2

n=7 ;4

Woke
region

I I ] !

.2 .4 .6 .8 1.0
x
l

FrGURE 4.--Curves showing the radius of body shapes

having various nose slopes.

By normalizing these shapcs appropriately the

group of body shapes sho_m in figure 5 are ob-

tained. The nose angle is now constant, about
7 °, and the maximunl thickness is again fixed at

the base; however, tile fineness ratio varies from
8 to 28.

The shapcs shown in figure 6 are similar to the

shapes obtained at high Mach numbers by apply-

ing the supersonic area rule to actual airplane

configurations. The forward portion of the shape
is the same for all bodies and tile location of the

rearward hump is essentially fixed. Two shocks,

one from the nose and another from the ]mmp,
contribute to the strength of the bow shock. The

five shapes shown in figure 7 are equivalent bodies

of revolution for actual airplane configurations.

These body shapes are included for comparison
with the idealized shapes treated elsewhere.

EFFECTOF LOCATIONOF MAX'IMUMTHICKNESS

Figure 8 shows the variation of the body-shal)e

constant for a family of shapes having various

1.0 m

.6 _ :

R ?4eke
l/I--"6 4 :region

.4 5

.2

i I I I
0 .2 .4 .6 .8 1.0

_x
l

_'IGURE 5.--Ctlrves showing the radius of body shapes

having various fineness ratios.

R

Ra
2

K
I00

'\ "-----2-

I l I t
.2 A .6 .8

X
l

I I
0 1.0 12 1.4

FIGURE 6.--Curves sho_ing the radius of body shapes

][similar to those obtained from the supersonic area rule.

Shape
.016 - I, Ct, = 0.62

2, c_ = o.6z
3, Cb = 0.57 -.,
4, Cb = 0.67' _ ",

_ .008 - " ""

0 .2 .4 .6 .8 1,0
___x
Z

FIG_TR]_ 7.--Curves showing the radius of the equivalent

bodies for several airplane configurations.

9I.8

j
6h

"¢ I I [ 1

0 .2 .4 .6 .8 ID

(x/l)ma x

FIGURE 8.--Shape coefficient for bodies having various

locations of maximmn thickness.

locations of maximuna thickness. The shapes for
wlfi('h the location of the max'imum section is

ahead of x/l= 1/2 are determined from the equation

+-/" • The constant A1 nor-
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malizes the right-hand side of the equation so that

its maximum value on the interval 0</<1 is

unity. Tile maximum cross section is located

(x/l),,a,=2/(2-_n). These shapes are shown in

figure 3. The shapes for which tile maximum
cross section is behind x/l=l/2 are determined

from the equation

X X n/2

-/{mar

The location of the maximum section is given by

(x/1)mar----n/(2-_n). The right-hand side of equr_-

tion (26) is also normalized by A1 so that its ma:d-

value on the interval 0</< 1 is unity. Thenmm

shapes given by equation (26) are obtained by
T 9:

making the substitution _----1--_: in equation (25).

Thus, for a fixed vMue of n the shape given by

equation (26) is identical to that given by equa-
tion (25), but reversed in the flow. The wake

assumed in the calculations is defined by R,----0.

(Although the Von Karman drag is identical for

two such reversed bodies, it is of interest to note

that the sonic-boom pressure is different.)

Figure 8 shows that the body-shape constant
Co decreases by 20 percent as (x/l) m_ increases from

0.2 to 0.5. For the reversed shapes Co increases

as (x/l),,_ increases from 0.5 to 0.8. This increase

is due to the extreme pointed nose. As (X/I)maz

increases, these shapes behave like bodies having

a stlortcr length and a long thin probe pointed
forward into the oncoming stream.

Since the nose angle for the nine shapes in this

family varies with the location of maximum thick-

ness the effects of these two parameters on the
value of Cb have not been isolated.

EFFECT OF NOSE ANGLE AND FINENESS RATIO

The body shapes shown in figures 4 and 5 are
determined from the equation

1
In figure 4, 2--R---_----10; this fixes the fineness ratio

of the shapes, but allows the slope at the nose, to

vary according to the relation

72

R'(0)=y 6

In figure 5, /=4r_. In this case the nose
_vnax

angle for _fll shapes is fixed at 7 °, and the fineness

ratio varies linearly with n. The body shapes

as shown in figures 4 and 5 are considerably exag-

gerated in order to display more clearly their area
development close to the nose. The wake for

these shapes is taken to be a cylinder extending
to an infinite distance downstream with a radius

equal to that of the body base.

Figures 9 and 10 show a nearly linear increase

in Cb with nose angle and fineness ratio. Although

these two parameters vary by a factor of 3.5, the
shape coefficient increases by only 20 percent.

The increase in Cb in figm'c 9 represents an actual

increase in the pressure jump due to increasing

bluntness. However, the pressure jump associ-

ated with the shapes in figure 5 is proportional to
2R,,_ _ Cb

-/ (_'b=_--_ and decreases with increasing fine-

ness ratio.

For the simple bullet-shape bodies shown in

fi_lres 9 and 5 thc bow shock and the nose shock

.66

.62

Cb .58

I f I l
0 5 tO 15 20

Nose ongle, deg

FInERy. 9.--Shape coefficient for bodies having var:ous

nose slopes.

.66

.62

Cb.SS

,54

0
[ I I I l !
5 I0 15 20 25 30

Fineness retie

FI(]URE 10.--Shape coefficient for bodies having various
fineness ratios.
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are identical. For more complicated configura-

tions lhe bow shock may be a combination of

several shocks which coalesce near the body. In

such cases the nose angle may have even less

effect upon tile bow-shock ovcrpressures than

indicated in figure 9 as can be seen clearly for the
next family of shapes discussed where the strength

of the nose shock is a relatively small contribution

to the total strength of the how shock.

SOME SHAPES SIMILAR TO THOSE OBTAINED BY APPLYING
THE SUPERSONIC AREA RULE

The body sllapes sho_m in figure 6 have area
distributions similar to those obtained at high

_[ach FlUnlbers by applying the supersonic area
rule to actual flight eonfiguralions. The shapes

were obtained from the equation

--_}\[/ ..] (27)

These shapes are quite flat in the region 0.3 </< 0.5.

The radius of the body in this region is denoted by

Rs. The important properties of these shapes

are given in the following table:

K

10
25
40
55

lf}0

0, 83

189

• 90
• 90
• 90

Rmaz

_Y

1.18

1, 64

2.15

2, 6fi

3,18
3, 70
4.22

O, 424

• 305

• 2325

,188

• 1573

• 135

• 1185

l *. R$ 1

_R2oJ'°r-_-=s-T.4

35.8

25, 7

19,6

15,9

13,3

11.4

10

1.48

2,17

3.05

3.95
4.7,3
5. 70
6• 57

As N increases, the location of the maximunl cross

section remains relatively fixed; however, the

maximum radius increases by a faetor of 4 for the

range of K considered here. A given wdue of N

fixes the value of the ratio R,,_ The fineness

ratio of the shape is then determined fronl the

of the fineness-ratio parametel'(_)(@ _)

]1% #_%

vahle

R5
once a wdue of _- is chosen. The wake used for

each body in the calculations is shown as the

broken curve in figure 6. It was chosen so that

when R_= 1 the flow turns through an angle
l 84.4

of 15 ° after passing over ttle peak. The flow then

separates from the rear surNcc of the projeelile

and as3nnptotieally approaches a cylinder of
constant cross section. For K--10 the wake is

simply Rw=0.

When/_'_ 10, the bow shock which extends into

the far field from these shapes is a combination of
two shocks --one from the nose and another from

the steep incline ahead of the maximum cross
section--which coalesce at some distance from

the body. The nose shock has the same strength

for all shapes; the strength of the second shock
increases with R ..... Thus, if No in equation (15)

were taken as the first root of F(y)--O only the
contribution of the nose shock wouhl be taken into

account.

In order to compare the relative strengths of the

two shocks for a given body, it is convenient to
- /2R.,._\

introduce the parameter (/_=l,,W)ub so that

I). (r_'/4_l] b Fo,'afixedvah, eof ,,lithe

m 1
bodies have the same nose shape ahead of _-----_and,

hence, nose shocks of equal slrength. The rearward

hump gives rise to a second shock which augments
the nose shock in the far fiehl. The differences in

the size and shape of the hump are responsible for

the variation in _. The wdues of g0 arc given

in the preceding tal)le. When K--10 the bow

shock and tlle nose shock are i<lentical. By
comparing _b for K=I0 with _ for the other

shapes it can be seen that tlle strength of the nose
shock becomes less important as K increases.

Thus, any changes in the strength of the nose

shock due to changes in the nose shape of these

bodies will be less significant than in those eases
wllere the nose shock alone is responsible for the

far-field pressure discontinuity.
Figure 11 again indicates only 11sn/all variation

in the coefficient C0 in spite of the difference in the

body shapes. In the present case there is a

20-percent decrease in C'_ as the fineness ratio

.8

.7

6

.6

I I [ I ]
0 .I .2 .3 A .5

R_

2,'%nox

FIGURE ll,--Shape coefficient for bodies similar to super-

sonic-area-rule shapes.
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varies by a factor of 3.5. This trend in Cb is tile

reverse of that shown in figure 10.

EFFECT OF THE WAKE

In order to investigate the flow field near the

body close to and behind the base, Whitham's

theory requires that some form be assumed for

the shape of the wake. Pictures of projectiles in

flight indicate that tile wake turns rouglfly

through 12 ° at the base and then converges to

form a cylinder of nearly constant ('ross section

equal to one-half the base area. Since the exact
form of the wake is not specified, it is of interest

to deternline the effect of various wake shapes on

the pressure rise across the shocks in the far fiehl.
In order to investigate this question a shape

obt'dncd h'om equation (27) was used in which

K=55 and R_/1--1/84.4. Four different, wake

shapes were tlmn considered as shox_m in figure 12.

The first is a cylinder of constant cross scetion

which joins smoothly to the maximum cross

section of the body. The two intermediate wake

shapes separate from the 1)ody after tlw flow has

turned through 15 ° and 30 ° , respectively. At

large distances behind the body tltese two shapes

become asymptotic to cylinders of constant cross
section. The fourth wake is defined 175" Sw=0,

that is, the flow is tangent to the surface every-

where along the rear surface of the body. This

requires ttw flow to turn througt_ 38 °.
The body-shape constant was calculated to be

the same for all four wake shapes. This result is
believed to hohl in all cases where the wake

separates from the body behind the nlaxinmm
section and becomes thinner thereafWr but no

general demonstration can be given. Tttc strength
of tim tail shock, however, is affected by the shape
of the wake as shown in reference 1.

/?2

I

58°_
I I I I I

0 .2 A .6 .8 tD 12.

X

I
1.4

FIatrRE 12.--Curve shoMng the radius of a body shape

with various assumed wakes.

SEVERAL AIRPLANE AREA DISTRIBUTIONS

References 4 and 9 indicate that 1he sonic-boom

pressures associated with a nonaxisymmetric air-

plane configuration may be predicted front Whit-

ham's theory by replacing the actual area distri-

bution by an equiwdent body of revolution

obtained from the supersonic area rule. Whit-
ham's method has recently been extended to

lifting configurations in another manner which is
also based on an "equivalent body" concept. (ref.

10). The five shapes shown in figure 7 are

equiwdent-body area distributions for actual air-
plane configurations. These slmpes have a rather

irregular area development and arc included for

comparison with the snlooth shapes treated

previously.

Shape 2 is a _[aeh number 3 supersonic area

distribution which is similqr to the shapes in figure

6. The other four shapes (1, 3, 4, and 5) are
Maeh number 1 area distributions. The bow

shocks on shapes 1, 2, and 3 are a combination of

three shocks which appear ahead of (x/l) ......

whereas the bow shocks for shapes 4 and 5 are a

combination of two shocks. In spite of the

diversity of the local details of these five shapes

Co again changes very little and the pressure jump

is largely determined by the fineness ratio.

CONCLUSIONS

The physical iml)lieations of the basic hypoth-

esis for Whitman's modification of linear theoI 3"

(Conmmnicat.ions on Pure and Applied 5lathe-

mattes, August 1952) have been considered and
a brief deriwttion given of the far-field equations

for the bow shock. An integral which determines

the effect of body shape upon the bow-shock

overpressures in the far field has been reduced to

a form whieh involves only the cross-sectional-

area distribution and ean be readily evaluated for

body shapes for which no analytical expression is

available. The integral has been evaluated for

a number of fainilies of body shapes chosen to

investigate the effeets of nose angle, fineness ratio,

and loeation of maximum cross section on the

bow-shock overpressures. The results of these

calculations indicate the following conclusions:

1. In regard to body geometry, the pressure

discontinuity in the far field is, to a first order,

independent of body shape and depends only on
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the fineness ratio. Local details have second-

order effects which, in general, can be accounted

for only by direct computatiorl of the body-shape
cons tan t.

2. The calculated values of the shape constant

which determines the effect of body geometry

upon the pressure jump varied from 0.54 to 0.81.

A convenient wdue of the shape constant is 0.64,
but an accurate determination of this constant

should be made if a careful comparison between

theory and experiment is desired.

LANGLEY ]_ESEARCtt CENTER,

_*ATIONAL AERONAUTICS AND SPACE ADMINISTRATION t

LANGLEY FIELD, VA., 3Iarch 29, 1960.
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